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CONVECTIVE INSTABILITY OF THE FLOW

OF A BINARY MIXTURE UNDER CONDITIONS

OF VIBRATION AND THERMAL DIFFUSION

UDC 536.25:532.529.2N. V. Gnevanov and B. L. Smorodin

Stability of a plane–parallel flow of a nonuniformly heated binary mixture filling a vertical layer
located in a field of gravity and in a high-frequency vibrational field is studied. The axis of vibrations
is directed along the layer. The case of rigid and isothermal boundaries of the layer impermeable for
the mixture is considered. The influence of thermal diffusion on the evolution of the admixture and
the thresholds of flow stability is taken into account. The study is performed on the basis of equations
for averaged fields. An asymptotic method with the use of the perturbation wavenumber as a small
parameter is applied in the long-wave limit. For arbitrary values of the wavenumber, the limit of
stability was determined by numerical integration. Charts of stability of gaseous and liquid binary
mixtures are plotted.

Key words: binary mixture, thermal diffusion, high-frequency vibrations, flow instability.

Introduction. Thermal vibrational convection is usually understood as a set of phenomena associated with
origination of regular flows in an inhomogeneous fluid under the action of vibrations. The mechanism of instability
responsible for such motion is manifested even under conditions of microgravity [1]. Interaction of the thermal
gravitational (Rayleigh’s) and vibrational mechanisms of instability in a fluid with a homogeneous composition was
considered in [2] for the case of a horizontal layer and in [3] for the case of longitudinal vibrations of an inclined layer.
Regions of resonant parametric instability were found, and spatial and temporal properties of critical perturbations
were examined. There are no resonant effects in the high-frequency limit where the period of vibrations is small
as compared to the characteristic times of the system, and an averaging technique is used to derive the equations
of convection [4]. The amplitude and frequency of vibrations are united into a single parameter: high-frequency
vibrational Rayleigh number. Convective instability of a horizontal layer of a binary mixture under the action of
transverse vibrations was first considered in [5] where the effect of thermal diffusion was ignored.

The problem of studying convection in binary mixtures and the mutual effect of fluid motion and thermal
diffusion is urgent in various technological areas, for instance, in separating isotopes or separating fractions in
petrochemical industry. The theory of convection of binary mixtures employs the Boussinesq approximation with
allowance for dissipative processes of diffusion and thermal diffusion [6]. Instability of the binary mixture filling
a plane horizontal channel bounded by rigid impermeable walls and possessing thermal diffusion in the field of
longitudinal vibrations was considered in [7, 8].

In the present work, we study the vibrational convective instability of an upward–downward flow of an
incompressible binary mixture with thermal diffusion in a vertical layer in the presence of longitudinal high-frequency
harmonic vibrations.

Formulation of the Problem. We consider a binary mixture of nonreacting components, which fills the
space between vertical solid plane–parallel planes x = ±h (vertical layer). The temperatures of the boundaries are
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constant: T (±h) = ∓Θ. The z axis of the Cartesian coordinate system is directed upward. There is no external
difference in concentrations, but a concentration gradient is established in an initially homogeneous mixture owing
to the effect of thermal diffusion (Ludwig–Soret effect [9]).

We write the equation of state of the mixture in the form

ρ = ρ̄(1 − βTT − βCC),

where ρ̄ is the density of the mixture at certain mean values of temperature and concentration, T and C are the
deviations of temperature and concentration from their mean values, and βT and βC are the coefficients of volume
expansion of the fluid and the concentration limit of density. Assuming that C is the deviation of the concentration
of the light component, we obtain βC > 0.

The layer is located in a static gravity field g = gγ (γ is a unit vector) and in a field of vertical (along
the z axis) harmonic vibrations with an angular frequency Ω and an amplitude b. We consider the limiting case
of high-frequency vibrations whose period Tv is much smaller than the hydrodynamic, thermal, and concentration
(but not acoustic) characteristic times of the system:

Tv � min [h2/ν, h2/χ, h2/D].

Here ν and χ are the kinematic viscosity and thermal diffusivity of the fluid, respectively, and D is the diffusivity.
The equations for the mean and fluctuating fields of velocity (v and w), temperature T , and concentration C

are obtained by a standard procedure of averaging [4] from the equations of convection in the Boussinesq approxima-
tion. We use the following scales: h for distance, h2/ν for time, gβT Θh2/ν for velocity, Θ for temperature, βT Θ/βc

for concentration, and ρgβT Θh for pressure. After normalization, we write the averaged system of equations

∂v

∂t
+ Gr (v∇)v = −∇p+ ∆v + (T + C)γ +

Rav

GrPr
(w∇)[(T + C)γ − w],

∂T

∂t
+ Gr (v∇T ) =

1
Pr

∆T, div v = 0, (1)

] div w = 0, rotw = (∇T + ∇C) × γ,
∂C

∂t
+ Gr (v∇C) =

1
Sc

(∆C − ε∆T ),

where p is the pressure, Gr = gβT Θh3/ν2 is the Grashof number, Rav = b2β2
T Ω2Θ2h2/(2νχ) is the vibrational

Rayleigh number, Pr = ν/χ̃ is the Prandtl number, Sc = ν/D is the Schmidt number, and ε = −αβC/βT is the
parameter of separation of the mixture (Soret parameter).

In system (1), the equation of motion of the mixture includes an additional vibrational force depending on
the fluctuating component of velocity w and also on temperature and concentration inhomogeneities. The diffusion
equation takes into account that concentration inhomogeneities can arise because of temperature inhomogeneities
owing to thermal diffusion whose intensity is characterized by the Soret parameter ε. The sign of this parameter
determines the direction of the flux of matter under thermal diffusion. For ε > 0, the direction of the flux of the
light component coincides with the temperature gradient (normal effect). For ε < 0, the light component diffuses
in the direction opposite to the temperature gradient (anomalous thermal diffusion).

The ideally heat-conducting and impermeable solid boundaries of the layer should obey the conditions of
the absence of motion of the fluid and zero flux of matter and also the condition of a constant temperature:

x = ±1: v = 0, wx = 0,
∂C

∂z
− ε

∂T

∂z
= 0, T = ∓1. (2)

The convective flow is assumed to be closed:
1∫

−1

vz(x) dx = 0. (3)

Problem (1)–(3) has a steady solution, which describes a plane–parallel flow with a cubic profile of mean
velocity, constant mean pressure, and linear distributions of fluctuating velocity and mean temperature and con-
centration:

v0 = (1 + ε)(x3 − x)γ/6, p0 = const, T0 = −x, C0 = −εx, w0 = −(1 + ε)xγ. (4)
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As is seen from Eq. (4), the amplitude of the mean and fluctuating components of velocity contains the factor
(1 + ε), which leads to an increase in velocity for the case of normal thermal diffusion (ε > 0) and to a decrease in
velocity for ε < 0.

Let us consider the stability of the basic state (4) to small perturbations:

v = v0 + ṽ, T = T0 + T̃ , C = C0 + C̃, p = p0 + p̃, w = w0 + w̃.

After linearization of the problem of vibrational convection (1), (2), we obtain the following system of equations
and the boundary conditions for small perturbations:

∂ṽ

∂t
+Gr (v0∇)ṽ+Gr(ṽ∇)v0 = −∇p̃+∆ṽ+(T̃+C̃)γ+

Rav

GrPr
(w0∇)((T̃+C̃)γ−w̃)+

Rav

GrPr
(w̃∇)((T0+C0)γ−w0),

∂T̃

∂t
+ Gr (v0∇)T̃ + Gr (ṽ∇)T0 =

1
Pr

∆T̃ ,

∂C̃

∂t
+ Gr (ṽ∇)C0 + Gr (v0∇)C̃ =

1
Sc

(∆C̃ − ε∆T̃ ), (5)

div v = 0, div w̃ = 0, rot w̃ = (∇T̃ + ∇C̃) × γ,

x = ±1: ṽ = 0, T̃ = 0, w̃x = 0,
∂C̃

∂z
− ε

∂T̃

∂z
= 0.

First we consider the stability of the basic state (4) to plane perturbations: ṽ = (vx(x, z, t), 0, vz(x, z, t)),
w̃ = (wx(x, z, t), 0, wz(x, z, t)), T̃ (x, z, t), C̃(x, z, t), and p̃(x, z, t). Instead of the fields of the mean and fluctuating
components of velocity, we use the stream functions ψ and F :

ṽ =
(
− ∂ψ

∂z
, 0,

∂ψ

∂x

)
, w̃ =

(
− ∂F

∂z
, 0,

∂F

∂x

)
.

We seek for the solution in the form of normal modes:⎛
⎜⎜⎝

ψ(x, z, t)
F (x, z, t)
T̃ (x, z, t)
C̃(x, z, t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ϕ(x)
f(x)
θ(x)
ξ(x)

⎞
⎟⎟⎠ exp (−λt+ ikz). (6)

Here k is the wavenumber, λ is the decrement, and ϕ(x), f(x), θ(x), and ξ(x) are perturbation amplitudes. Substi-
tuting (6) into the system of equations for perturbations (5), we obtain a spectral–amplitude problem:

−λ∆ϕ = ∆2ϕ+ θ′ + ξ′ − ikGr (vz0∆ϕ− v′′z0ϕ) + (1 + ε)
ikRav

GrPr
(f ′ − θ − ξ),

−λθ =
1

Pr
∆θ − ikGr (vz0θ + ϕ), −λξ =

1
Sc

∆ξ − ε

Sc
∆θ − ikGr (vz0ξ + εϕ),

∆f = θ′ + ξ′,
(7)

x = ±1: ϕ = 0, ϕ′ = 0, f = 0, θ = 0, ξ′ − εθ′ = 0.

The prime in Eq. (7) indicates differentiation in terms of the transverse coordinate x, and a standard notation
∆ = d2/dx2 − k2 is used.

The critical values of one of the parameters (Gr or Rav) determining the boundary of stability depend on
all other parameters of the system: Rav∗ = Rav∗(Gr,Pr , Sc, ε, k) and Gr∗ = Gr∗(Rav,Pr , Sc, ε, k).

Long-Wave Instability. The condition of impermeability for the flux of matter at the boundaries of the
layer of the binary fluid leads to long-wave instability (k = 0). We write the solution of the amplitude problem (7)
in the form of series in terms of the small parameter k:

λ =
∞∑

n=0

λnk
n, ϕ =

∞∑
n=0

ϕnk
n, f =

∞∑
n=0

fnk
n, θ =

∞∑
n=0

θnk
n, ξ =

∞∑
n=0

ξnk
n. (8)
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Substituting series (8) into the boundary-value problem (7), we obtain consecutive approximations for finding
the decrements and amplitudes of perturbations. In the zero order in terms of k, all levels of the spectrum, except
for one neutral level of the concentration type, correspond to decaying perturbations:

f0 = θ0 = ϕ0 = λ0 = 0, ξ0 = const. (9)

In what follows, we use normalization (ξ0 = 1). In the first order in terms of k, we have an inhomogeneous system

ϕIV
1 + θ′1 + ξ′1 − (1 + ε)

iRav

GrPr
= 0,

θ′′1 = 0, f ′′
1 = ξ′1 + θ′1,

1
Sc

(ξ′′1 − εθ′′1 ) − iGrvz0 = −λ1.

The condition of its solvability is obtained by integrating the equation for the concentration across the layer
from −1 to 1. With allowance for the boundary condition for concentration and oddity of the profile vz0, we obtain
λ1 = 0.

The eigenfunctions of the first-order problem have the form

ϕ1 = i(1 + ε)
[
− GrSc

576

(x8

70
− 2x6

15
+ x4 − 58x2

35
+

163
210

)
+

Rav

24GrPr
(x4 − 2x2 + 1)

]
, θ1 = −x,

ξ1 = iGrSc (1 + ε)
( x5

120
− x3

36
+

x

24

)
, f1 =

iGrSc (1 + ε)
48

(x6

15
− x4

3
+ x2 − 11

15

)
.

In the second order, we obtain the following system:

ϕIV
2 + θ′2 + ξ′2 = iGr (vz0ϕ

′′
1 − v′′z0ϕ1) + (1 + ε)

iRav

GrPr
(f ′

1 − θ1 − ξ1), f ′′
2 = θ′2 + ξ′2,

1
Pr

θ′′2 = ikGr (vz0θ1 + ϕ1),
1
Sc
ξ′′2 − ε

Sc
θ′′2 =

1
Sc

− λ2 + iGr (vz0ξ1 + εϕ1).
(10)

The correction λ2 determining the boundary of long-wave instability is found from the condition of solvability of
system (10). Integrating the equation for concentration perturbations across the layer, we obtain

λ2 =
2
Sc

+
4

2835
Gr2Sc (1 + ε)(1 + 2ε) − 2

45
Rav ε(ε+ 1)

Pr
.

For λ2 = 0, we obtain a relation between the parameters of the problem, which corresponds to the boundary of
long-wave instability:

2835Pr + 2Gr2Sc2Pr (1 + ε)(1 + 2ε) − 63 Rav ε(1 + ε)Sc = 0. (11)

This expression is a generalization of two previously examined limiting cases:
1) In the absence of vibrations (Rav = 0 and Gr �= 0), Eq. (11) yields an expression for the critical Grashof

number at the boundary of stability of the thermal concentration flow [10]

Gr2 = −2835/[2Sc2(1 + ε)(1 + 2ε)] � 0,

which implies that long-wave instability exists only in the region of the anomalous Soret effect −1 < ε < −1/2;
2) In the absence of gravity (Gr = 0 and Rav �= 0), the threshold of the long-wave mode of a thermal

vibrational flow [7] is determined by the condition

Rav = 45Pr/[ε(1 + ε)Sc].

Only non-negative vibrational Rayleigh numbers Rav have a physical meaning; hence, the long-wave instability
exists for all values of the parameter of separation of the mixture in the region of the normal Soret effect (ε > 0)
and only for ε < −1 in the region of the anomalous Soret effect.

The dependences between the problem parameters, which refer to neutral long-wave perturbations, in the
general case of the mutual influence of thermal vibrational and thermal gravitational mechanisms of instability
(Rav �= 0 and Gr �= 0) are plotted in Figs. 1 and 2. With increasing vibrational Rayleigh number, the thresholds of
long-wave instability of the flow also increase. The dependences Rav(Gr) for a fixed value of the Soret parameter
are parabolas (see Fig. 2).
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Fig. 1. Threshold values of the Grashof number of long-wave instability versus the Soret parameter for
different values of the vibrational Rayleigh number (gas mixture; Pr = 0.75 and Sc = 1.5).

Fig. 2. Threshold values of the vibrational Rayleigh number of long-wave instability versus the Grashof
number for different values of the Soret parameter (gas mixture; Pr = 0.75 and Sc = 1.5).
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Fig. 3. Charts of stability for a gas mixture (Pr = 0.75 and Sc = 1.5)
in the case of normal thermal diffusion.
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Fig. 4. Charts of stability for a gas mixture (Pr = 0.75 and Sc = 1.5) in the case of anomalous thermal
diffusion.

Fig. 5. Chart of stability for a liquid binary mixture (Pr = 6.7 and Sc = 676) in the case of anomalous
thermal diffusion.

Numerical Results. The solutions of the spectral–amplitude problem (7) for perturbations with a finite
wavenumber are sought with the use of differential sweep [11] and orthogonalization [10].

Let us first discuss the flow instability in a binary gas mixture (Pr = 0.75 and Sc = 1.5). Figure 3 shows
the charts of instability for the case of a positive Soret effect (ε > 0), which characterize the interaction of the
hydrodynamic and static vibrational mechanisms of flow instability. Hereinafter, the region of stability of the basic
state is adjacent to the origin of the coordinate system. In microgravity (Gr = 0), the mean flow of the binary
mixture is absent, but there exist high-frequency fluctuations of the mixture. Instability arises owing to the action
of the thermal vibrational mode of instability on the background of quasi-equilibrium of the medium filling the
layer. An increase in the Grashof number leads to an increase in the thresholds of convection with respect to this
mode: the arising thermal gravitational flow prevents the formation of convective waves by smearing the arising
structures. In the other limiting case (in the absence of vibrations, Rav = 0), we obtain the problem of stability of
a plane–parallel flow in a vertical layer. An increase in the vibrational parameter Rav decreases the threshold of
stability of the convective flow. An increase in the Soret parameter, according to Eq. (4), intensifies the mean and
fluctuating flows and, hence, reduces the region of stability of the basic state.

In the case of an anomalous effect of thermal diffusion, the charts of stability of the gas mixture are qualita-
tively different (Fig. 4). In microgravity (Gr = 0), the binary mixture is unstable to cellular vibrational perturbations
(dashed curves). In this particular case, monotonic perturbations are less dangerous, as was demonstrated in [7]. An
increase in the Grashof number initiates origination of a thermal gravitational flow: interaction of vibrational and
hydrodynamic modes of instability increases the thresholds of vibrational convection; simultaneously, the boundary
of the monotonic mode decreases. If the Grashof number exceeds a certain critical value Gr∗(ε), monotonic per-
turbations become the most dangerous ones. An increase in the absolute value of the Soret parameter expands the
range of stability; the segment of the boundary corresponding to vibrational perturbations increases.

For a water–salt mixture (Pr = 6.7 and Sc = 676), the boundary of the stability region in the range of the
anomalous Soret effect (ε = −0.5) consists of the region of neutral monotonic perturbations and various regions of
vibrational modes in which the perturbations differ in their wavenumbers and frequencies (Fig. 5).

Studying the stability of the binary mixture flow to spatial perturbations (vy �= 0 and wy �= 0) with
wavenumbers kz �= 0 and ky �= 0, we can obtain transformations similar to Squire’s transformations [9]. The
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formulas for recalculating the critical values of Gr and Rav for three-dimensional perturbations in the problem of
the flow of a binary mixture under the action of high-frequency vibrations are obtained if the parameters of plane
pertubations Gr, Rav, and k̄ are known:

a = kz

/√
k2

z + k2
y, Gr = Gr/a, Rav = Rav/a

2.

The parameter a characterizes the spatial orientation of the wave vector of perturbations. The analysis of stability
of the mixture flow under the action of longitudinal vibrations shows that plane perturbations (a = 0) are more
dangerous than spatial perturbations.

Conclusions. Instability of the flow of a nonuniformly heated binary mixture filling a vertical layer in a high-
frequency vibrational field of longitudinal harmonic vibrations is considered within the framework of an averaged
approach. Interaction of vibrational and gravitational mechanisms of convective instability is studied. Charts of
stability of the flows of gas mixtures and salt solutions are obtained. In the case of liquid binary mixtures, the
boundary of the stability region consists of different segments corresponding to neutral monotonic and vibrational
modes. Vibrational perturbations have different frequency and spatial characteristics. Plane perturbations are
demonstrated to be the most dangerous ones.

This work was partly supported by the U.S. Civilian Research and Development Foundation (Grant No. PE-
009-0) and by the Russian Foundation for Basic Research (Grant Nos. 04-01-96029 and 05-01-00789).
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